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ABSTRACT
A stabilizing control design for general linear time vary- invariant systems through state-feedback [6].

Ing systems is presented and analyzed. The control is a
state-feedback law with gains determined by a standardSiecoptn h fedak anfrteabv

* method employed in optimal reguilator problems. The qon- dfndcnrllwrqiei rnilcmltn
* siere cot fnctin i. hwevr, ynamcaly rdefned backwards recursion over an interval of length 7T for all t it

over a fixed depth horizon. IlIme method is shown to yield a sntbioshatispmwue cnerndedop-
stable closed loop system and computationally efficient tationally, feasible. In the scquel we shall show that in tact
recursions for thme feedback gain are provided, one can derive a recursive aigorithrn that updates the con-

trol gain'directly, avoiding the necessity to solve a back-
wards Riccati equation over and over again. This algorithm

* is derived through a convenient embedding of the feedback

1. INTRODUCTION gain in a suitably defined scattering matrix and using some
well-known results of Redheffer scattering theory [7). We

Several approaches exist for the design of stabilizing shall then address the problem of system stability. estab-
control laws for linear time-invariant systems. Along with lishing that, under certain uniform controllability condi-
the classical frequency-domain techniques, the "modern" tions and some conditions on the moving interval cost func-
performance index opiiain mtos frhr tion. the closed loop system becomes asymptotically stable.
guaranteed robust, stabilizing feedback controls [1]. The
situation is quite different, however, for time-varying linear A suboptimal state estimator, the structural -dual sys-
systems. While an "optimal,. stabilizing state-feedback gain tern of the receding horizon controller, is introduced and
for a time-invariant systemp eon be found by solving an alge- breldicsdinteatseioofhepe.

*braic Riccati equation, the analogous solution for the time-
varying case requires the backwards iteration of a matrix 2. MOVING HO0RIZON CONTROL LAWS
differential equation over an infinite horizon 121.13). Obvl- -Consider the time-varying linear system described by.
ously. this is not a practical way to obtain a stabilizing eon- d
trot. The problem arises from the fact that the cony )utation - f)= Ajx(f).e.Bu(t) (2.1)
of the gain at every instant of time requires, in principle.
the optimization of a performance index over an infinite where z (.)ER" and u (JERm. Let Jr be a standard quadratic

* time span into the future. A natural way to try to overcome cs ucinloe ie nevl(~f)dfnda
the computational difficulty is to assume that at all 11
moments f we have to find the optimal control for a fixed, J = f [Jae(r)Qxz(r) + u' (7)Ru(r))d'r + e'(t1 )Fj I x ,t) (2.2)
finite horizon of depth T [41.[5).

-. -The standard regulator prohiem poses the question of Here Q1. Rt and F are known, positive-definite. sym metric
determining the optimal control u*(.) to be applied to a matrices, essentially design parameters.

* linear system In order to miniimize a cost functional over a It is well-known, [1). that the optimal control input that
given interval (tj.fj). In the cn~e of a quadratic cost the
resulting control is a simple suite-feedback law, the gain mii(e2.i3rvdd)yteflown tt-febc a
computation involving the wril-known backwards Riccati us (t) = -Rj-1BgKQtj;F.,)x(t)(.)
equation [1). The control applied at time t. given a "sliding"
horizon of fixed depth r. would therefore be the Initial step 'The gain K(f~tj;Fa,) is computed through the backwards
in minimizing a quadratic pcrform~ance index over (9, +1 T). Riccati recursion

* . It is also immemdiate that this procedure leads to a state- d (~jF (-f.s),+XK-~fF
feedback control law, the gain being computed through a drKif 1 F 1 I I~~.:FA I 'Kr~1 P
Rticcati recursion starting at t + I' and proceeding backwards -K(T.t,:F 1 1 )B, 1B'ffK(T.,;F, + Q, (2.4)

*to 1 4]. BR

Although very reasonable in roncept, this receding hor- with fInat condition K1 *fj.1 ;F11 I=j
Izon procedure does not have mry obvious interpretation in
terms of optimizing a perf-l:uanvc index over some

predterinedintrval(t~.l~) it vile les isted intheThe modified, recedinA horizon control u'M(f) is defined
fact that it yields a practical nitd computationally efficient a h nu ttm htwudb eddt iiie
technique for st.1hilizinr Ri.-n!2ral timie-varying linear sys' vr( 1+Tte olwn rtro
tcm%. Also. it is worth ineintinnimng that this is a proper gen- f
*ralization of Kleinman's "easy' way to stabilize a time- 4=f [s'(r)Qx(') +' WL(1)R,1(7))dr

+ s z(i +Ti)r'er t + r) (2.5)

t Tu wrk ~a.aportd I, artby he oit grlicu ?Oiamat t~n~d Therefore thin control law Is also a state-feedback law, given
University under tou',.Ptct )AA(Cfl-11I -il'~h. y h l 11R A-n'y Remearch Office. by:

w~~~dtir P~tIA~~ -f' ie A;.- Force Offer of Sct,icIfCuQ R'?K1t+;irrI (2.6)
Research. AXr Fvot. SY~te-liq C-11:1-0l~ wid Coalm ac- A' 49.6070-c.OtA. Dr.

Kigi, hie a r~e -011C. ;k'.* i'. of Iuinan.Ln'.tAVom and Comirol,
Bewa wlift on leveil. witq xaq..ftieJ o atb h n iityo i the gain KQ .t + T;P'.,T) bcinr obtained from the backwards

8 $ 5 06 - 8R at~ equationm (2.4) with 1,1 replaced by f + T.
83 05 06 .

18..
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The interpretation of this modifed control is that. at -- ") = - K(r.o)DR,-HJ]I(..) (3.2)
each moment 1. the input applie..I is chusen as if the optimi-
zation of the criterion J. over (t.t + 1) was the overall a
objective. It is readily seen. though, that this control does -- _ L(t.o) = *(r.)BR,-I,(r..) (3:3)

not minimize, any obvious overall cost function of the type Together with the backwards Riccati equation (2.4). in which
(2.2) on any given interval (ta.t 1 ). the final time h s bcen parametrized.

In principle, in order to compute K(t.t+T:Fr) one

might solve at all moments in time the backwards Hiccati .K(.o) = A',K(r.o)+K(r.o)A,
equation, with final condition at i + T given by Fi, . This Is 07

not a computationally fcasiblo- approach. However. one
*Immediately realizes that in the case of time-invariant sys-

tems and fixed weighting matrices Q. R and F. the moving and appropriate final conditions at r = a. these equations
horizon method yields a constant feedback gain. The control yield the backwards evolution of a 2n by 2n scattering
law. in this case. is simply given by matrix, defined as

*u "(t) = -R'H RKx(t) (2.7) * I (r~) L(r.u) 1. wih1 1 ( .)
where K can be obtained from S,, = iK((.o) *(r.)J with S.. 1 = , 13

d
K,= KA + K - K, BR-INK, + Q : K0 = F (2.8) The above chosen final values matrix does not display the

correct starting point for the g-in recursion. Since. how-

The particular case of Q = 0 andF'-.- provides Kleinman's ever. we also have through scattering theory a method to
method for stabilization of a tume-invariant system [6]. change initial or final conditions of Riccati equations to arbi-

*The general case with F, = - turns out to be very trary values, we shall in the sequel concentrate on this gen-

- . Important in providing a stabilizing moving horizon control eric case of Fg = 0. After the gain is computed for this par-

for time-varying systems. The infinite weight assigned to the ticular final condition the true gain can readily be obtained

final state implies that the optimal control is required to using a change of final condition formula (see (3.11)).

take the state to 0 at the final time. while minimizing a qua- Now. a two parameter matrix S. has been defined
dratic cost over the given interval [4]. In this case the back- through a set of backwards differential equations together
wards Riccati equation has infinity as Initial condition, a with a "canonical" final condition, an identity matrix with
somewhat ambiguous starting point for a recursion. There- dimension 2n. In the sequel we shall have to exploit the
fore the following well-known trick is invoked: instead of properties of this matrix, in particular its behavior as the
considering the differential equation for K(t.t;-) derive a parameter a varies infinitesimally. In this context we have
recursion for P(t.t,) = K'(t.tj.:2o). It is quite simple to the following basic result due to Redhefler (7] (see also Reid
show that the result is the following Riccati equation ti1]):

~- Plt .t) = - Pit.11 )A, -AsP(t.t) THEOREM 3.1
P(t.t$)Q p(.tl) + BR, -0, (2.9) Given that the matrix finctions involved in the

definition of the linear system (2. 1) and the cost function

Now. however the final condition is P(tf.t$) = 0. For the (22) are pieceiause continuos, the elements of the about

cse of F 8 = - the modified, moving horizon control is given deftned scatterng matrix obey the fotlouing foruordts
differential equations:

u *(t) = -Re-BP-'(t.t+T)z(t) (8.10)

and the computation requires the inversion of P(t.t+T) at . = [A, t- L(r.o)Q,] (rPa) (3.6)
all t.( 3 7It was proved by Kalman in [2J. that the "steady-state" Do ('.o) = * r.o)A. + QL(r.o)] (3.7)

time-varying feedback gain K(t.) stabilizes, under uniform +
complete controllability assumptions, the time-varying sys- o L(r,.) = AL(..)+4 L(0.a)A'
tem (2.1). Practically. however there is no way to obtain
XK(t.-.). The moving-horizon control laws are readily com- + L(r.o)Q.L(,r.u) - B.R.-'B. (3.8)
putable in principle, since they require solutions of recur-
slons over a finite time-span. Even better than that. we can L( 7',o) = $(r..0Q,1..o) (3.9)
derive efficient gain-update algorithms that remove the so
necessity to re-solve for each time point the backwards Ric- the initiatl condtion for S, at a r " beitg the identity
cati equation, thus rendering the* method computationally matrix.
efficient.

The above result together with the backwards equations
defining the scattering matrix, provides the evolution of S,,

G. CENERAL C MlI UPDATE RNCURSIONS with resp'ect to variations in each index. T'and a. Now. renliz-

Using some results from the scattering theory origi- ng that the moving horizon gain is obtained as a submatrix
. nally developed by Redheffer for the study of transmission- of S(t.t + T) (up to a change to the true final conditions) we

line problems, and then applied to estimation and control need to derive evolution equationi for the case of simultane-
theory by Kailath and his coworkers, we derive recursive ous variation in the parameters, according to 7- = t and
update algorithms for the gain required in moving horizon a = tI + T. We have the following
controls. We refer to 171-[101 for comprehensive reviews of
scattering theory. The main idea or scattering theory is to THEOREM 3.

.. mbed the Ricdati variable. X( r.), that satisfies a forwards

or backwards equation, into a scattering matrix S,s. The The eaotutwn equionx, for the stiig ,v ,dow
embedding is done by defining the auxiliary matrices #('.o). scolloping Volrn., re giue by
"{r.o) and L(r.) through the following differential tqua- d 0
tions: -t t T) -.

* 00
- *- *(r..) =*(-.o)(A, - ,R,'fK(r.o] 1(.1) * o-(),, (3.10)

* '" * , ' ,. - *'' - , ' : i ' / _ - .: + . . . . . .



- ... -.

'Tile above relation, esc~iitilly the chain rule for Thus moving horizon control design is a computation-
differcntiation. provides a coiph'tt ' set of reet'rsi. .- for the ally feasible method for stabilizing time varying systeis.
(zero final condition) fet'dback gain anti the auxiliary The above ideas can obviously be applied to discrc'te-tirne
matrices. These recursions art- i combination of the evolu- moving horizon control problems. see for example refer-
tion equations yielding the vriations or s, with r and a ences [5] and [101.
separately.

The iniLialization of the recursions or type (3.10) is done 4. CLOSE-LOOP STABILITY ltl'SUI.TS
by first solving the backwards equations for an initial inter- As pointed out earlier. it is a well-known result that the
v val. sdy (L.to+T). for both the gain and the auxiliary feedback control law with A(t.-) provides an asymptotically

- matrices. stable closed-loop system. under uniform controllability and
" In order to find the true feedback gain sequence. observability assumptions. It is not obvious at -this point.
- corresponding to the sequence of final conditions F,. we however. whether the sliding horizon controls can stabilize a
" shall use the following formula, derived from a basic closure general time-varying system.

property of the Riccati equation: The following simple example is quite suggestive. Let us
X T ) tconsider a scalar, time-invariant system z = az+bu. withKUt.t +T:1S,r) =K(t.t +T) r

* */(t.t+T)F~r[I-LQtt+T)F,,r]'$¢(t.t+T) (3.11) the modified receding horizon cost J,, = f(qx2ru*)d- . It

where K('r,a;F,) denotes, as before, the gain obtained can be shown by straightforward algebra that. the closed
through the backwards Riccati equation with final condition loop system is stable when T > (2aa)'In[(a+t)/(a-l)] for

* p*. a > 0. where a = (l+qb2/ra2 )"/ Z

Note that (3.11) provides the true gain by operating on This example shows that even without terminal weight
the entries of Sg(*,T} and on 1,7r . More about the deriva- there exists a finite horizon that stabilizes the system. In
tions, essentially very simple when relying on scattering the general infinite horizon case the terminal weighting
theory. of the above mentioned results can be found in [0]- matrix plays no role and can be arbitrarily set to zero. Since
[10). the method we describe introduces a finite. sliding horizon

It is interesting to note that In the case of F,-. we concept, the weighting matrix FS. which is essentially a

obtain from (3.11) the following result: design parameter, plays a crucial role in determining the
properties of the resulting control law. In the sequel we

K(t.t+ T;)=K(t.t+T)-4(t.t+T)L-'(t.t+T)9(t.t+T) (3.12) shall discuss three different choices for FS:

which expresses the gain P-(t.t + T) in terms of the recur-
sively obtained sliding-window scattering matrix. Case 1: F = 0 (4.1a)

Case 2: 'F = (4.1b)
Some extensions and numerical consideraUons: Case 3:
In the case of constant finnl weighting in the moving

horizon criterion, we can also derive recursions of the type |FS: Ft > 0. F +A'F,+FAc-FB, RS F+Q s; Of (4.1c)
(3.10) that provide the true gain directly, avoiding the need t

for a continuous final condition adjustment. Also in case of " In the above classification the infinite final weighting
given differential behavior of F the above simplification is can, of course be considered as a particular case of (4.1c).
feasible. In all these cases the recursions turn out to have It has a special value however, being the most useful one for
the form of (3.10). the modifications amounting to predeter- practical design, as will become clear later.
mined changes in the matrices appearing in the recursions The existence of a finite, though possibly large horizon
with index t + T. This is of course not unexpected, since the for which the control law stabilizes the system can easily be
changes occur at the right-end boundary conditions. proven for the time-invariant case. We have the following

It Is also obvious that the same embedding can be done result.
starting with the P(t.t + T) gain, which again obeys a back-
wards Riccati equation, and this method will provide direct THEOREM 4.1
recursions for it. If the pzir |A.B is conzre~cb~e and e hoe

The above derived algorithms, although involving a F = O.Q > OR > 0. then there ez-txts a finite horizon T. such
" matrix twice the size of the gain matrix needed, have the that the mSoing horizon control iate (2.6) stabilizes the syt-

potential of being computationally much more efficient than tern.
solving the backwards Riccati recursion at each point in
time. (Also note that we have considerable redundancy in
the scattering matrix, since f(T,0) = C'('.u) by definition.) PROOF: The closed loop system is given by
Some numerical problems may however arise in propagating [
the sliding-window differential equations; the updating algo-St(t) [A -OR-tBKr]z(t)
rithms are likely to cumulate errors and thus the gains
obtained after a large number of iterations will differ from where Kr is obtained from (2.9). Let f' be the solution of the

=the correct ones. The situation can be ameliorated by algebraic Riceati equation. i.e the steady-state feedback

implementing a restart procedure at adaptively determined gain. Lot.Kr" k - Kr. Then the closed-loop system can be
7 intervals. The idea is to compute, at intervals, the "true" written as

gain through the usual forwards or backwards growing- d = [A - - ) BR-'KrX(t)
. memory update algorithm and to compare the result with

the gain provided by the sliding-window propagation. The Now, since A-BR-2B'R is a stable matrix, it is sufficient to
' time interval to the next such ch'ck procedure can then be sow thte p tDR

increased or decreased according to a suitably defined show that the "perturbation term" I IBR-tBK;' . z:
* measure of the difference between the "true" and pro- can be made arbitrarily small for some T. But it is known

pagated gain. (Obviously the Aliding-window algorithms will that K1tsKS, for t1st 2 and that Kr-A' as T4-. thus
be propagated with the "true" values as initial conditions i IIR-IYKr1z
between the test intervals. i.e. will be "restarted".) The I0 as T-.
above process will clerly determine the period of time at
which a restart is necessary in order to keep the error in and therefore there exists a fintite T such that the perturba-
the gain within a p edetermninrd bound. tion is arbitrarily close to zero. This completes the proof.

4i



The existence of a possibly very large horizon for which backwards Riccati equations as follows:

the modified control yields a stable closed-loop systeui. for d
the general time-varying case. can be shown using a similar -- M(t) = M(),+A's1(t)-M()I)R -'HgM(t)+Q, (4.7a)

- approach. Intuitively it is clear that, for a very large T. the
d jNQl) = N(t)A, +X,N(i)-NV(t),1IJNt)Q, (4.?b)value of K(t.t+T;F) approaches K(I,-) to an arbitrary -it

degree. This provides a control that differs very little from

the steady-state feedback law. which is known to stabilize with final conditions given respectively by

the time-varying system. M(t$) = Fj and N( f e
The case of zero final weighting leads thus to generally Now it is readily realized that if F,= F. and , I > Fe, then

large horizons and also problems in determining a suitable N i r ali tat iflF, w F an show then
. depth T. The case of Fe = " for which we actually give a i(t) ;- NQt) for all t !; tf. Similarly, we can show that pro-'

method for choosing the horizon depth, that turns out to be vded Q, 1 = Quali Fs 2 F2 implies M(i) dt N(t) at all t c t.I

connected to the controllability properties of the system to These inequalities immvdiatcly provide (4.5) uine by choos-

be stabilized. is therefore of greater practical interest. In 111 K(aa.a:F,) = F., we shall have K(o..os;F,) F.s by'

order to state the results in this case we recall the following (4.1c) and therefore K(t.U,:F,,) 2t K(t.Vx;F~d is implied by,

the fact that K(u.eF.K)F., s K(o.aoeF.3 ).
DEFINITION 2) The result of the second part of this lemma may be

The pair |A(t).B(t)l is uniformly completely contrel/- obtained by a slight modification of the arguments given in
able if r some 6>0 the following inequalities hold for all [2][12-[141 and the definition of uniform complete control-

1) a'; W(.t+5); as[ (4.2) lability. o
) +Let us give an Interpretation to condition (4. Ic). Note

2) I I,(ti.ts)I I s 71tr-t2l (4.3) that this condition implies that the matrix F satisfies the

.t the above expressions jp(r.o) stands for the state transi- following differential equation (of course under the assump-
tion matrix of A(t ). a. s are positive constants. -(.) maps R tion that its evolution is differentiable)
*od R and is bounded on bounded intervals and W(r.) is d
the ceontrollability matrix defined as: tt-F, = FA,+XF8 -FB, -'B',F,+Q,+H, 1', (4.5)

for some matrix sequence H,. Let K(t.t:F I) be the solution

W(t,.t,) = fg(t.)BF,P''(t,.o)de (4.4) of the backwards equation (2.4) with final condition Fir.

Then we have

FS at K(t.tj:F 1 ) for all t ict 1  (4.9)
We now have the following result on the stability of mnov-

ing horizon control laws with F= -. which was first proved and thus we can state that the steady-state solution for the
in [4). gain K(t.m) has to be a lower bound on the matrix

sequences of class (4.1c). We are now in a position to prove

THEOREM 4.2 the following result

If the pair A .B, I is uniformly completely controllable.
and if OsQa4I and ai5*iR,!SagI then for any T > the THEORM 4.3

moving horizon control law (2.10) stabilizes the system If FS is a matrix sequence of class (4. 1c). R, and Qs
(2. .satisfy the conditions of lemma 4. 1 and the pair A .i, I is

uniformly completely controllable, then for any fixed T

Now. in addition to the previous particular cases of final ssh that 6 is To. the control (26) yllds a closed loop

weighting a somewhat more general class of final weighting system that is uniormly asymptotically stable.

sequences will be discussed. The most general case of an
arbitrary sequence Fr, is extremely difficult to handle due to PROOF: Let us consider the adjoint of the closed-loop
a lack of known monotone properties for solutions of Riccati system, with the feedback gain given by (2.6). where the
equations. Therefore we shall investigate the class of fnalweightingsequence is of class (4.Ic)
sequences defined by (4.1c). It may be that with further d
effort the above results can be extended to more general -t . -A, (t (4.10)

situations, as has been done for time-invariant systems in r ( w - : 4.10)
l ?] for example. 1ere At A -0#K, where Ar K(tjt+T-F,.r).

L"" Further consider an associated scalar-valued function
In order to prove the main result, some properties of

Riccati equations have to be established first. These are V(z..t) = z.(t)K t
summarized in the following lemma (see also (11]). which, by part 2) of lemma 4.1. satisfies

LEMMA 4.1 agf IZ.I* v(z..t)rsaldIZ.I

1) If the matri F belongs to the class defined by Therefore. the above defined function is a positive definite
(4.1c). then ('.o). the solution of the backward Riccati function of the adjoint system state. Now the asymptotic
-equation (2. 4)satisios the following inequalities: stability of the original closed-loop system Is guaranteed if
q ( t hg athe adjoint system state vector is exponentially increasing

.K( ro;,) K(r.&2 :F.) for ic uas e (4.5) (i.e. the adjoint system is asymptotically unstable). But we
can show that

2) If the pair IA.B# I is uniformly completely contrail- d st
able and/or all 1. a=1 -' Q -_ a41 and aI ! R, & as then for dt ) -AKg-l1C,'A~,+21)R ,'R,+ Ix
any T such that 6 1 T 9 - there there exist positive con- dt

slants a and as such that Z. |B, R, -'s + Kj"'Q, K,' + 8 -K-10 .e;lr.) .. I.tZ.
a?/ - K(.t+T; 6 ,T) -_ ao (4.6) and using the result part ). lemma 4.1. on the monotone

properties of the gain w.r.t. changes in the second parame-
ter. we obtain

PROOF: 1) We shall derive this result using some mono-
tone properties of Riccati equations. Consider two d /-v(.,l zx'.,R,-' V,. (4.11)



."-' N ow, let f (,-.rr) be the transition rnitrlx of the closed-loop with boundary condition at E$ givn by Fg,-KQt*. 1 +T;F.,t)•

.. " system z = z. Froi (4.11) it fellows that Integrating tlae above equation. and taking into considera-
ion the fact the last term is negative (by lema 4.1). we-'.-" ,,obtain

'.(c)[f k(to.t)Ih R,-, i',k,(to.t)dt]z.(to) (4.12) E ) *i(r.ft)[Fi -K(tJ. + T:FF.r)J(y.t,) (5.2)
to: Since the closed-loop system was proved asymptotically

a- an1atI(to): .2 for tf t o0+6 (4.13) stable we shall have E(It)-,O as t!-,. Therefore

for some positive constant all. The inequality (4.13) results M(t,-) ! K(t. +T;F8,r) which establishes the desired

from the fact that the closed-loop system is uniformly con- result..'-

trollable [12]. since there exists some positive constant ala Further work on moving horizon controls is still needed

Ssuch that to see whether It also inherits more of the nice features of
"optimal' feedback controls, as for example robustness and

f I IRC- 'B1
K i l I' d ( -A alg good sensitivity properties.

But. (4.12) implies that the adjoint system increases 6.2. A structurally dual state estimator

exponentially, which in return guarantees the asymptotic Since it is well-known that there exists a duality

stability of the original system with the feedback under con- between optimal linear regulator problems and optimal

sidcration. This completes the proof. • state estimation, one may ask what state estimation filter is
The above theorem indicates that there exists a whole the dual of the moving horizon control. The answer is

Teabso t heorel nicate bat heeexs a wthl indeed simple. Structurally. the dual system is a Kalman

class of terminal weighting matrix sequences that, with a filter with a sliding window gain defined as the solution of a
horizon even slightly greater than the controllability inter- forward Riccati equation over a fixed-length interval
val 6. yield stabilizing control laws. From the above results -T.T). This estimator is a suboptimal state rcconstruc-
it is also conjectured that large horizons are necessary if filter and can be analyzed by the methods employed

athe final weighting matrix is small, whereas for sequences of above in order to establish stability results. Also, obviously.

*large final weightings the stabilizing horizon approaches the tegi paeeutoscnb eie nasmlrwycontollailiy inerva 6.the gain update equations can be derived in a similar way.
controllability interval 6.

The above results simplify somewhat for the case of An important fact to realize, however, is that this filter
Time-invariant systems. The class (4.1c). of constant final does not provide the "best" estimate of the state given the

tieghinatritsseadi y T ehe lass(4.1c).ofcsta final observations over the sliding interval. It is not a solution to
weighting matrices is readily seen to be the set of final the Limited memory state-space filtering problem, as posed
weighting matrices satisfying F K.w the solution of the for example in Jazwinski [15). since it does not "completely
algebraic Riccati equation associated with tforget" data beyond t-T. This can be easily seen from the
len. fact that the filter has infinite impulse response. Scattering

theory does however provide a solution to this problem, too.

5. SOME FUTIJER TOPICS AND REULTS The solution involves the application of an idea similar to

5..Cs nurdb oighorizon laws the one that ted to efficient gain update formulas to an
6.1. Cost Incurred by moving hextended scattering matrix. These results are presented in

The moving horizon control dynamically redefines the [10].
performance criterion and therefore it clearly does not

optimize any overall criterion. Since the standard cost of 6. CONCLUDING REMARKS
the type (2.2) is an accepted measure for the performance
of a control law it is useful to determine bounds on the cost A general and computationally feasible method of sta-
incurred by the modified control laws. Indeed, we ca n prove bilizing time-varying linear systems through state feedback

was presented. A variant of the method, the case of infinite
the following final weighting, was previously analyzed in [4]. and the sys-

tem stabilizing property of the resulting control law were
THEOREM 5.1 established. This paper further generalizes the moving hor-

" . h standard quadratic cost incu rd bV the sliding izon method to a whole class of final weighting matrices and

h orizon control has the follotwing bound also provides explicit gain update algorithms which render
the method more efficient computationally.

Several extensions of the method are possible. We could

fx" (t)Qx z )+W (f)R, u 4t )]dt for example deal with a time varying borizoh depth T,. and
() T ) it is should be clear that the approach presented in section

(5.) 3 easily yields the gain update algorithms for this case too.

One might wish to change the horizon depth to adapt to

Pdrdvarying controllability properties of the system under con-

PROOF The quadratic cost for a linear feedback control trol. The case of discrete time systems can easily be

of the type (2.3) Is given by z'(t 4 ).M(t.t,)z(tJ. where treated within the same framework the results being some-

M(,t lJ 1 ) obeys the following backwards recursion what more involved algebraically but not conceptually (see

* -L--MQII) = AM(l.tJ) + MQt.t,)I for example [5].[10] and also [15]).

+ K(t ,L + T.), , -ffg Kt .t + T; .r)+Q AKNOW1J .DMENT
with the final condition M(t 1 1) F,.. From (3.10) we have It is a pleasure to aknowledge the invaluable help of

Mrs. Rachel Levy in preparing this manuscript and in provid-

d .A.K(.I+T:,T,)+K(.+T;F,7t)/4+ ing guidance through the maze of the SU-DSN Computer
~-"K(+T :F System.

,... K(I. + T:t,.r)DhRC-'BK(1. + T;F.TJ+Q -*( (.u:Fo)lo.14t

Now define F(t):. M(il,)-K(f.t4TP..)" It obviously

satisfies the following equaition

"t a'(t)+,()A -* d

. .-
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